Polynomials.solution

  EXERCISE 2.2
Q.1 Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
(i) 6x² + 11x + 5 = 0
Soln: –
6x+ 11x + 5 = 6x+ 6x + 5x + 5
= 6x(x +1) + 5(x +1)
= (x +1) (6x +5)
∴ zeroes of polynomial equation 6x2 +11x +5 are { −1, 56 }
Now, Sum of zeroes of this given polynomial equation = −1+( 56 ) 116
But, the Sum of zeroes of any quadratic polynomial equation is given by = coeff.ofxcoeff.ofx2
= 116
And Product of these zeroes will be = 1×56 56
But, the Product of zeroes of any quadratic polynomial equation is given by = constanttermcoeff.ofx2
56
Hence the relationship is verified.

(ii) 4s2 – 4s + 1
Sol:
     4s2 – 4s + 1 = 4s2 – 2s  2s + 1
= 2s (2s – 1) 1(2s – 1)
= (2s – 1) (2s – 1)
∴ zeroes of the given polynomial are: {12,12}
∴ Sum of these zeroes will be =  = 1.
But, The Sum of zeroes of any quadratic polynomial equation is given by = coeff.ofscoeff.ofs2
44 = 1
And the Product of these zeroes will be = 12×12
=14
But, Product of zeroes in any quadratic polynomial equation is given by = constanttermcoeff.ofs2
14.
Hence, the relationship is verified.

(iii) 6x2 – 3 – 7x
Sol:
     6x2 – 7x – 3 = 6x2 – 9x + 2x – 3
= 3x (2x – 3) +1(2x – 3)
= (3x + 1) (2x – 3)
∴ zeroes of the given polynomial are: – (13,32)
∴ sum of these zeroes will be =  13+32
=76
But, The Sum of zeroes in any quadratic polynomial equation is given by = coeff.ofxcoeff.ofx2
76
And Product of these zeroes will be = 13×32=12
Also, the Product of zeroes in any quadratic polynomial equation is given by = constanttermcoeff.ofx2
36 = 12
Hence, the relationship is verified.

(iv) 4u2 + 8u
Sol:
     4u2 + 8u = 4u (u+2)
Clearly, for finding the zeroes of the above quadratic polynomial equation either: – 4u=0 or u+2=0
Hence, the zeroes of the above polynomial equation will be (0, −2)
∴ Sum of these zeroes will be = −2
But, the Sum of the zeroes in any quadratic polynomial equation is given by = coeff.ofucoeff.ofu2
 = 84 = −2
And product of these zeroes will be = 0 × −2 = 0
But, the product of zeroes in any quadratic polynomial equation is given by = constanttermcoeff.ofu2                                                                          = 04 = 0
Hence, the relationship is verified.

(v) t2 – 15
Sol:
     t2 – 15 = (t+ 15) (t − 15)
Therefore, zeroes of the given polynomial are: – {15, −15}
∴ sum of these zeroes will be = 15 −  15 = 0
But, the Sum of zeroes in any quadratic polynomial equation is given by = coeff.ofxcoeff.ofx2
                                                                = 01 = 0   
And the product of these zeroes will be = (15) × (−15)  = −15
But, the product of zeroes in any quadratic polynomial equation is given by
constanttermcoeff.oft2                                                                     = 151  = −15
Hence, the relationship is verified.

(vi) 3x2 – x – 4
Sol:
 3x2 − x − 4   = 3x2 – 4x + 3x − 4
= x (3x – 4) +1(3x – 4)
= ( x + 1) (3x – 4)
∴ zeroes of the given polynomial are: – {−1, 43 }
∴ sum of these zeroes will be = −1 +43 = 13
But, the Sum of zeroes in any quadratic polynomial equation is given by = coeff.ofxcoeff.ofx2
(1)3 = 13
And the Product of these zeroes will be = {−1 × 43 }
43
But, the Product of zeroes in any quadratic polynomial equation is given by = constanttermcoeff.ofx2
43
Hence, the relationship is verified.

Q2. Form a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
(i). 26 , −3
Sol.
Given,
α + β = 26
αβ = −3
∴ If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-
x2 – (α+β)x +αβ = 0
Thus, the required quadratic equation will be:
x2 – (26)x −3 = 0
6x− 2x – 18 = 0.

(ii). 3 , 43
Sol.
Given,
α + β = 3
αβ = 43
∴ If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as: –
x2 – (α+β)x +αβ=0
Thus, the required quadratic equation will be: –
x2 – (3)x + 43 =0
3x− 33x + 4 = 0.

(iii).  0, 7
Sol.
Given,
α + β = 0
αβ = 7
∴ If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-
x2 – (α+β)x +αβ=0
Thus, the required quadratic equation will be: –
x2 – (0)x + 7 = 0
x7 = 0.

(iv).  −2, −2
Sol.
Given,
α + β = −2
αβ = −2
∴ If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:
x2 – (α+β)x +αβ=0
∴ The required quadratic polynomial will be:
x2 – (−2)x −2 = 0
x+ 2x – 2 = 0.

(v). 7239
Sol.
Given,
α + β = 72
αβ = 39
∴ If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as: –
x2 – (α+β)x +αβ = 0
∴ The required quadratic polynomial will be:
x2 – (72)x + 39 = 0
18x+ 63x + 6 = 0.

(vi). 6, 0
Sol.
Given,
α + β = 6
αβ = 0
∴ If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-
x2 – (α+β)x +αβ = 0
∴ The required quadratic polynomial will be:-
x2 – 6x + 0 = 0
x2 – 6x = 0.

                                  EXTRA QUESTIONS
Q.1 Find a quadratic polynomial whose zeroes are: -2+12212.
Sol.
Given: –
α + β = 2+12 + 212
= 4.
αβ = (2+12)(212)=412=72
∴ If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as: –
x2 – (α+β)x +αβ = 0
Thus, the required quadratic polynomial equation will be :-
x2 – (4)x −72 = 0
2x2−8x+7 = 0.

Q.2 If α and β are the roots of a quadratic polynomial ax2+bx+c, then find the value of  α2 + β2.
Sol.
From the equation, (α+β=ba)
And,               α×β=ca
(α+β)2=α2+β2+(2αβ)
∴ α2+β2=(α+β)22αβ
∴ α2+β2=(ba)22ca
∴ α2+β2=b2a22ca
 ∴α2+β2=b22aca2.
Similarly, we can find out the values of (α3 + β3) and (α3 – β3).

Q3. If α and β are zeroes of a quadratic polynomial x2+4x+3, form the polynomial whose zeroes are  1+αβand1+βα.
Sol.
Since α and β are zeroes of a quadratic polynomial x2+4x+3,
α+β= -4, αβ = 3
Given: –  α1 = 1+αβ
β1βα
Now, sum of zeroes = 1+αβ+1+βα
2+αβ+βα
2αβ+α2+β2αβ
= (α+β)2αβ
On putting values of α+β and αβ from above we get:-
Sum of zeroes = α1 + β1 = 423
= 163
Now, Product of zeroes = (1+αβ)(1+βα)
=1+βα+αβ+αββα
=2αβ+β2+α2αβ
(α+β)2αβ
On putting values of α+β and αβ we get:
Product of zeroes = α1 × β1 = 423
163
Thus the required quadratic polynomial equation will be:-
x2 – (α1 + β1)x + α1β1 = 0
x2 – (163)x + 163 = 0
3x2 – 16x +16=0.

Q4. If α and β are zeroes of a quadratic polynomial p(x) = rx2+4x+4, Find the values of “r” if: – α2 + β2 = 24.
Sol.
From the given polynomial p(x),
α + β 4r, and αβ = 4r………. (1)
Since,(α + β)2 = α2 + β2 + 2αβ
Given,   α2 + β2 = 24 and from equation (1).
Therefore,  (4r)2=24+2×4r
16r2=24+2×4r
16 = 24 r+ 8r
3r+ r – 2 = 0
3r+ 3r – 2r -2 = 0
3r(r+1) – 2(r+1) = 0
(3r-2) (r+1) = 0
∴  r = 23   or   r = -1



  EXERCISE 2.3
Q.1 If a polynomial x-3x2+x+2 is divided by a polynomial g(x), the quotient and remainder obtained are (x-2) and (-2x+4), respectively. Find the equation of g(x).
Sol.
Since, Dividend = Divisor × Quotient + Remainder
Therefore, x³ -3x2+x+2 = g(x) × (x-2) + (-2x+4)
(x-3x2+x+2) – (-2x+4) = g(x) × (x-2)
Therefore, g(x) × (x-2) = x-3x2+3x-2
Now, for finding g(x) we will divide “x-3x2+3x-2” with (x-2)
24

Therefore, g(x) = (x2 – x +1)
                                 
Q.2 Find the quotient and remainder by dividing the polynomial f(x) by the polynomial g(x).
(i) f(x) = x+ 2x– 9x + 5,   g(x) = x2+5
5
Therefore, Quotient is (x+2) and Remainder is (-14x − 5)
(ii) f(x) = x5+2x4-9x3+5x2-2x+1, g(x) = x+ x– x+1
6
Therefore, Quotient is (x+ x − 9) and Remainder is (14x2 – 12x +10)


(iii) f(x) = 2x+ 7x+ 5x+ 8x + 5, g(x) = 11− 2x+ x2
7
Therefore, Quotient is  – (x + 4) and Remainder is (9x2 + 19x +49).


Q3. Find all the zeroes of the polynomial equation 2x4-3x3-3x2+6x-2, if two of its zeroes are 2and2.
Sol.
Since this is a polynomial equation of degree 4, there will be a total of 4 roots.
Let, f(x) = 2x– 3x– 3x+ 6x – 2
2and2 are zeroes of f(x).
(x2)(x+2)(x2− 2) = g(x), is a factor of given polynomial f(x).
If we divide f(x) by g(x), the quotient will also be a factor of f(x) with remainder =0.
8
So, 2x− 3x− 3x+ 6x – 2 = (x– 2) (2x2 – 3x +1).
Now, on further factorizing (2x2 – 3x +1) we get,
2x2 – 3x +1 = 2x2 – 2x − x +1 = 0
2x (x − 1) – 1(x−1) = 0
(2x−1) (x−1) = 0
So, its zeroes are given by:  x= 12 and x = 1
Therefore, all four zeroes of the given polynomial equation are:

2,2,12and1.

No comments:

Post a Comment