NCERT 10th Maths All Formula

Real Numbers

1.      Euclid’s division algorithm
                a = bq + r    where r is Reminder which is 0 ≤ r < d
                                            q is Quottient
                                            a and b are dividend and divisor; b ≠ 0

2.      Finding HCF using Euclid’s division algorithm
                
Step 1 : Apply Euclid’s division lemma, to a & b such that a > b.and find q and r such that a = bq + r, 0 ≤ r < d. 
Step 2 : If r = 0, b is the HCF of a and b.
Step 3 : If r ≠ 0, apply the division lemma to b & r. 
Step 4 : Repeat the process until the remainder r = 0. The divisor at this stage will be the required HCF.


Consider a quadratic equation:
ax+ bx+ c = 0 with a ≠ 0
The roots of the following quadratic equation are given by:

x=b+b24ac2a  and  x=bb24ac2a

(or)      x=b±b24ac2a
This is known as quadratic formulae for finding roots of quadratic equation.
Nature of roots:
The term (b– 4ac) is known as discriminant and it determines the nature of roots of the quadratic equation.

If b– 4ac > 0, then the equation will have two distant real roots.

If b– 4ac = 0, then the equation will have two equal real roots.

If b– 4ac < 0, then the equation will have unreal roots.


No comments:

Post a Comment