Exercise 8.1

Q1) In ABC , 90 at B, AB=24cm, BC = 7cm.
Determine:
(i)sin(A), cos(A)
(ii) sin(C), cos(C)
Ans.) In ABC , B=90
By Applying Pythagoras theorem, we get
AC2=AB2+BC2
(24)2+72 =(576+49)
AC2 = 625cm2
à AC = 25cm
(i) sin(A) = BC/AC = 7/25
Cos(A) = AB/AC = 24/25
(ii) sin(C) = AB/AC =24/25
cos(C) = BC/AC = 7/25

Q2) In the given figure find tan(P) – cot(R)
Ans.) PR = 13cm,PQ = 12cm and QR = 5cm
According to Pythagorean theorem,
132=QR2+122
169=QR2+144
QR2=169144=25
QR=25=5
tan(P) = oppositesideadjacentside=QRPQ=512
cot(P) = adjacentsideoppositeside = PQQR = 512
tan(P) – cot(R) = 512512=0
Therefore ,tan(P) – cot(R) = 0

Q3) If sin(A) = 3/4, calculate cos(A) and tan(A)
Ans.) Let ABC , be a right-angled triangle, right-angled at B.
We know that sin(A) = BC/AC = 3/4
Let BC be 3k and AC will be 4k where k is a positive real number.
By Pythagoras theorem we get,
AC2=AB2+BC2

(4k)2=AB2+(3k)2

16k29k2=AB2

AB2=7k2

AB=7k

cos(A) = AB/AC = 7k/4k=7/4
tan(A) = BC/AB =3k/7=3/7

Q4) In question given below 15cot(A) = 8 ,find sin A and sec A.
Ans.)  Let ABC be a right angled triangle, right-angled at B.
We know that cot(A) = AB/BC = 8/15
Given
Let AB side be 8k and BC side 15k
Where k is positive real number
By Pythagoras theorem we get,
AC2=AB2+BC2

AC2=(8k)2+(15k)2

AC2=64k2+225k2

AC2=289k2
AC = 17k
sin(A) = BC/AC = 15k/17k = 15/7
sec(A) =AC/AB =17k/8k = 17/8

Q5) Given sec Ѳ =13/12, calculate all other trigonometric ratios.
Ans.) Let  ABC be right-angled triangle, right-angled at B.
We know that sec Ѳ =OP/OM =13/12(Given)
Let side OP be 13k and side OM will be 12k where k is positive real number.
By Pythagoras theorem we get,
OP2=OM2+MP2

(13k)2=(12k)2+MP2

169(k)2144(k)2=MP2

MP2=25k2
MP = 5
Now,
sin Ѳ = MP/OP = 5k/13k =5/13
cos Ѳ = OM/OP = 12k/13k = 12/13
tan Ѳ = MP/OM = 5k/12k = 5/12
cot Ѳ = OM/MP = 12k/5k = 12/5
cosec Ѳ = OP/MP = 13k/5k = 13/5

Q6) If A and B are acute angles such that
 cos(A) = cos(B), then show A =B .
Ans.) Let  ABC in which CDAB .
A/q,
cos(A) = cos(B)
à AD/AC = BD/BC
à AD/BD = AC/BC
Let  AD/BD =AC/BC =k
AD =kBD …. (i)
AC=kBC  …. (ii)
By applying Pythagoras theorem in CAD and CBD we get,
CD2=AC2AD2 ….(iv)
From the equations (iii) and (iv) we get,
AC2AD2=BC2BD2
AC2AD2=BC2BD2
k2(BC2BD2)=BC2BD2
k2=1
Putting this value in equation (ii) , we obtain
AC = BC
A=B (Angles opposite to equal side are equal-isosceles triangle)

Q7) If  cot Ѳ = 7/8, evaluate :
(i) (1+sin Ѳ)(1-sin Ѳ) / (1+cos Ѳ)(1-cos Ѳ)
(ii) cot2Θ
Ans.) Let ABC in which  B=90
and C=Θ
A/q,
cot Ѳ =BC/AB = 7/8
Let BC = 7k and AB = 8k, where k is a positive real number
According to Pythagoras theorem in ABC we get.

AC2=AB2+BC2

AC2=(8k)2+(7k)2

AC2=64k2+49k2

AC2=113k2

AC=113k

sin Ѳ = AB/AC = 8k/113k=8/113
and cos Ѳ = BC/AC = 7k/113k=7/113

(i) (1+sin Ѳ)(1-sinѲ)/(1+cosѲ)(1-cos Ѳ) = (1sin2Θ)/(1cos2Θ)
1(8/113)2/1(7/113)2
= {1-(64/113)}/{1-(49/113)} = {(113-64)/113}/{(113-49)/113} = 49/64

(ii) cot2Θ=(7/8)2=49/64

Q8) If 3cot(A) = 4/3, check whether (1tan2A)/(1+tan2A)=cos2Asin2A or not.
Ans.) Let ABC in which B=90
A/q,
cot(A) = AB/BC = 4/3
Let AB = 4k an BC =3k, where k is a positive real number.
AC2=AB2+BC2

AC2=(4k)2+(3k)2

AC2=16k2+9k2

AC2=25k2

AC=5k

tan(A) = BC/AB = 3/4
sin(A) = BC/AC = 3/5
cos(A) = AB/AC = 4/5
L.H.S. = (1tan2A)(1+tan2A)=1(3/4)2/1+(3/4)2=(19/16)/(1+9/16)=(169)/(16+9)=7/25
R.H.S. =cos2Asin2A=(4/5)2(3/4)2=(16/25)(9/25)=7/25
R.H.S. =L.H.S.
Hence, (1tan2A)/(1+tan2A)=cos2Asin2A

Q9) In triangle EFG, right-angled at F, if tan E =1/√3 find the value of:
(i) sin EcosG + cosE sin G
(ii) cosEcosG – sin E sin G
Answer
LetΔEFG in which F=90, E/q
tanE=FCEF
tanE=FCEF=13
Where k is the positive real number of the problem
By Pythagoras theorem in ΔEFG we get:
EG2=EF2+FG2
EG2=(3k2))+K2
EG2=3k2+K2
EG2=4k2
EG=2K

sinE = FG/EG = 1/2
cosE = EF/EG =  32  ,
sin G = EF/EG = 32 cosE = FG/EG = 1/2
(i) sin EcosG + cosE sin G = (1/2\ast1/2) + (3232)= 1/4+3/4 = 4/4 = 1
(ii) cosEcosG – sin E sin C = (3212)(3212)(34)(34)= 0

Q10)In Δ MNO, right-angled at N, MO + NO = 25 cm and MN = 5 cm. Determine the values of sin M, cos M and tan M.
Answer
Given that, MO + NO = 25 , MN = 5
Let MO be x.  ∴ NO = 25 – x
By Pythagoras theorem ,
MO2=MN2+NO2
X2=52+(25x)2
50x = 650
x = 13
∴ MO = 13 cm
NO = (25 – 13) cm = 12 cm
sinM = NO/MO = 12/13
cosM = MN/MO = 5/13
tanM = NO/MN = 12/5

Q11)  State whether the following are true or false. Justify your answer.
(i) The value of tan M is always less than 1.
(ii) secM = 12/5 for some value of angle M.
(iii) cosM is the abbreviation used for the cosecant of angle M.
(iv) cot M is the product of cot and M.
(v) sin θ = 4/3 for some angle θ.
Answer
(i) False.
In ΔMNC in which N = 90,
MN = 3, NC = 4 and MC = 5
Value of tan M = 4/3 which is greater than.
The triangle can be formed with sides equal to 3, 4 and hypotenuse = 5 as
it will follow the Pythagoras theorem.
MC2=MN2+NC2
52=32+42
25 = 9 + 16
25 = 25
(ii) True.
Let a ΔMNC in which ∠N = 90º,MC be 12k and MB be 5k, where k is a positive real number.
By Pythagoras theorem we get,
MC2=MN2+NC2
(12k)2=(5k)2+NC2
NC2+25k2=144K2
NC2=119k2
Such a triangle is possible as it will follow the Pythagoras theorem.
(iii) False.
Abbreviation used for cosecant of angle M is cosec M.cosM is the abbreviation used for cosine of angle M.
(iv) False.
cotM is not the product of cot and M. It is the cotangent of M.
(v) False.
sinΘ = Height/Hypotenuse
We know that in a right angled triangle, Hypotenuse is the longest side.
∴ sinΘwill always less than 1 and it can never be 4/3 for any value of Θ.

Exercise 8.3
1) Calculate:
                (i) sin18cos72
                (ii) tan26cot64
                (iii) cos 48° – sin 42°
                (iv) cosec 31° – sec 59°

No comments:

Post a Comment