EXERCISE – 4.1

 Exercise 4.2
Q1. Find the roots of quadratic equation by factorization:
x2(3+2)x+6 = 0
 Sol.
x23x2x+6=0

x(x3)2(x3)=0

(x3)(x2)=0

Therefore x=2   or   x=3

Q2Find the roots of quadratic equation:
10x273x+3=0
 Sol.
10x273x+3=0

x273x10+310=0

x2(32+35)x+310=0

x232x35x+310=0

x(x32)35(x32)=0

(x32)(x35)=0

Therefore   x=32   or   x=35

Q3. Find the roots of quadratic equation:
                   400x2 – 40x + 1 = 0
 Sol.
Since,   400x2 – 40x + 1 = 0
Therefore, x2110x+1400=0

x2110x+1400=0

x2(120+120)x+1400=0

x2120x120x+1400=0

x(x120)120(x120)

(x120)(x120)

Therefore          x=120   or   x=120

Q5. Find the roots of quadratic equation:
3x2+7x+23=0
 Sol.
3x2+7x+23=0

x2+73x+2=0

x2+63x+13x+2=0

x(x+63)+13(x+23)=0

(x+13)(x+23)=0

Therefore x=13   or   x=23



Q.8 The base of a right angled triangle is 3cm more than its altitude. If the hypotenuse is 15cm. Find the length of its base and altitude.
Sol.
In right angled triangle ABC:
Capture1
Let,        length of altitude = x cm
Therefore                   base = (x + 3) cm
oth LHS and RHS, we get the following equation:-
x– 2(2x) + 22 = 8 +22
(or),   (x – 2)2 = 12
(x – 2)2 = 12
(x – 2)2 – (12)2= 0
Since,           a2b2=(a+b)(ab)
Therefore,  (x212)  (x2+12)
x=2+12   or   x=212
This is how we find roots of a given equation by method of completing the square.

Exercise – 4.3



Q.4 Find the roots of the equation 2x+ x – 4 = 0 by method of completing the square.
Sol.
Therefore,
4x+ 2x = 8
Now,
(2x)2+2(2x.12)=8

(2x)2+2(2x.12)+14=8+14

(2x+12)2(334)2=0

(2x+12+332)(2x+12332)=0

Therefore   x=1+334  or  x=1+334 
Exercise 4.4

 Q.1 Find the roots of following equation:
 x+1x=5, with x ≠ 0.
Sol.
On simplifying the above equation we get:
              x– 5x + 1 = 0
Here, a=1, b = – 5 and c = 1.
On putting the values of a, b and c in quadratic formulae we get:
x=(5)+(5)24(1×1)2×1   and   x=(5)(5)24(1×1)2×1

x=5+2542   and   x=52542

x=5+212   and   x=5212

Q.2 Find the roots of following equation:
1x1x3=7, where x0,3
 Sol.
On simplifying the above equation we get:
7x2 – 21x + 3 = 0
Here,  a = 7, b = -21 and c = 3
On putting the values of a, b and c in quadratic formulae we get:
x=(21)+(21)24(7×3)2×7   and   x=(21)(21)24(7×3)2×7

x=21+4418414   and   x=214418414

x=21+35714   and   x=2135714

Q.4 Find the values of k in the following quadratic equation so that they have two equal real roots 3x+ kx + 5 = 0
Sol.
Given,                 3x+ kx + 5 = 0

Here          a = 3, b = k and c = 5


 Sol.
Here        a = 2, b = 1 and c = – 4
Since,
D = b2 – 4ac
Therefore,
D= 12 – 4(- 4 × 2)
D= 1 + 32
Therefore,               D= 33
Since, D > o. The given quadratic equation will have real roots.


No comments:

Post a Comment